Stat-Ease Blog


“BetterSpeak”—3 Steps to Improving How You Say What You Say

posted by Guest Author Dr. David Pelton on March 9, 2018

Stat-Ease is collaborating with Dr. Pelton to help users who achieve experimental success better communicate their results. Enjoy this article on improving how you say what you say!

In Act 1, Scene 1 of Shakespeare’s tragedy King Lear, Lear asks his three daughters to proclaim their affection for him which the first two, Goneril and Regan, do with genuine warmth, but the third, Cordelia, does not. She rather coldly says that she loves her Majesty according only to her bond, no more nor less. He’s taken somewhat aback by her callous comment and responds by saying “How, how Cordelia! Mend your speech a little, lest it mar your fortunes.”

Shakespearean actors worth their salt know full well that it’s not only the meaning of the words they speak but the way they speak them that makes what they say worth listening to. They are keenly aware of how to use articulation, modulation, tempo, sound and pronunciation to affect their speech. They are elocutionists who, to paraphrase one dictionary’s definition, are masters in the art of speaking effectively in public.

Here are three key steps to improving—or mending—your speech so you, too, can speak more effectively. Once you’ve read them and practiced the suggested exercises, you’ll be well on your way to becoming a more polished speaker and, who knows, even a proficient enough master to go on stage and play Goneril, Regan, Cordelia or Lear.


First: Variety above all else. You never want your voice to sound colorless, dull, passive or lifeless, so to give it character and make it interesting to listen to, change speeds, expand its range and play with dynamics. Which would you rather see, a river placidly and monotonously rolling along without anything in it to grab and hold your interest or one that’s alive with activities that catch your eye and make you want to stop and pay attention? The same with the voice and variety.

Also, pause, pause and pause yet again. You never want to run phrases together so that you prevent audiences from understanding, appreciating or enjoying what you’re saying. Silence is, indeed, golden so, to quote the great American raconteur Will Rogers, “never miss a good chance to shut up.” Actors and storytellers vary their voices and use silence to keep their audiences engaged and involved. Listen to your favorite actor or actress reciting a poem or reading a novel and you’ll hear what I mean. You’ll certainly be taken in by how they use their voices and pauses to hold your interest. Better yet, record yourself reading, say, A. E. Houseman’s short poem “When I was one and twenty” from “A Shropshire Lad” and listen to what you sound like when you play it back. Did you vary speed, range and dynamics and use pauses to make the poem come alive and be worth listening to, or did you merely go through the motions and read it without vocal inflection or pausing so it came across as boring, bland and, in a word, blah. Hopefully, the former.

When I was one-and-twenty

I heard a wise man say,

‘Give crowns and pounds and guineas

But not your heart away;

Give pearls away and rubies

But keep you fancy free.’

But I was one-and-twenty,

No use to talk to me.

When I was one-and-twenty

I heard him say again,

‘The heart out of the bosom

Was never given in vain;

‘Tis paid with sighs a plenty

And sold for endless rue.’

And I am two-and-twenty,

And oh, ‘tis true, ‘tis true.

You’ll find that, as you practice varying your voice and pausing, you, too, will turn into an actor or storyteller who’s more than adept at using variety and silence to persuade, influence, motivate, entertain or educate the people you’re talking to. So, vary away and shush.


Second: Enunciate, enunciate, enunciate. English is a hard, percussive language and, to speak it well, consonants need to be sharp and incisive. Many speakers of English, both native and foreign, don’t do this enough and, as a result, listeners all too often fail to understand what’s being said because speakers don’t pronounce their “b”s, “t”s, “v”s, “l”s, “m”s, “p”s or “d”s clearly, cleanly and consistently. So ask yourself which consonants you don’t articulate well and work on them. Try the following tongue twisters and see if they’ll help. As you go through them, notice how many consonants you miss—quite a few, I’ll wager.

  • Tom took Tony to Tennessee to teach two turtles to tickle a tree
  • Bring back Bill’s bright blue baseball bat
  • Sally saw Sylvester stacking silver saucers side by side
  • Wes waited patiently while Willie wound Walt’s weighty watch
  • Dandy Doug Doolittle danced the night away with delightfully dreamy Debbie Dalrymple
  • Peter Piper picked a peck of pickled peppers
  • Unique New York, unique New York, unique New York

Try them again making sure to enunciate the next consonant as emphatically as the one before and you’ll notice a marked improvement.

So, enunciate sharply and consistently and you’ll be better off for it.


Third: Handle with care. For your voice to be the expressive, compelling, engaging and appealing instrument you want it to be, it needs more than its fair share of TLC.

It is extremely fragile, though paradoxically quite strong, and can become damaged much more easily than people think it can without proper care. So, to speak well:

  • Rest it often by taking frequent vocal “naps”—your voice consists of two muscles or folds (not cords as some people call them) that need to be rested to work at peak efficiency, so from time to time pause to let them relax and return to their normal position of repose.
  • Keep it moist by drinking water that’s warm or at room temperature but never cold—if you drink bottled water that’s been in the fridge or with ice, it will anesthetize your vocal folds and make them less flexible and pliable. Remember, too, that they, like gears, need to be constantly lubricated so that they don’t dry out and become rough, scratchy and irritated—conditions that, if left unchecked, can lead to damage, in some cases serious damage. By the way, if you become unsettled or uncomfortable because your mouth has suddenly gone dry and you have no water handy to wet it simply bite your tongue or the inside of your cheek and moisture will return.
  • Keep it warm. Muscles that are kept cold become rigid, taut, inflexible and unpliable and, therefore, prone to injury. So, if the room you’re speaking in is cool or if the air conditioning is too high and you can’t turn it down, make sure to wear a turtle neck sweater or some other bit of clothing around your neck to keep your folds from tightening up. Of course, by drinking warm (or room temperature) water, you’ll also help keep your voice warm and in good shape.

Also, avoid as much as possible:

  • Smoking—this is the most major of major irritants and will do irreparable harm to the voice and should be avoided at all costs.
  • Drinking tea or coffee—these are irritants that dehydrate the voice and keep the folds from working properly. (Shying away from sucking lemons or other acidic fruit that will do the same thing is also a good idea.)
  • Drinking milk or eating chocolate—these will coat the voice and make it harder for the folds to work properly
  • Shouting or trying to speak above noise—this is an irritant that will seriously harm the voice and can cause considerable damage if done for too long at a time.
  • Coughing or clearing the throat—these irritants will also cause damage and, even, considerable damage if done too often or for too long at a time
  • Whispering—curiously, this is also an irritant that can do considerable damage if done for too long
  • Speaking consistently at one pitch level—this will tire the voice, irritate it and make it less responsive if done for too long at a time.

To paraphrase W. H. Auden, “all (you) have is a voice,” so the more you take care of it and use it wisely, the more it will be able to do what you ask it to.


The British actress Dame Penelope Keith once said that when she went to school everyone had elocution lessons, not to sound posh but so they could be understood. Understanding, of course, is at the heart of any communication so it goes without saying that the more effectively and expertly you use variety, silence and diction to speak and the more you take care of what the composer Richard Strauss calls “the most beautiful instrument in the world (and the most difficult to play)”, the greater the impact of what you say will have on those listening to you. In short, just remember that what you say will only be as good as how you say it.



Dr. David Pelton has been a professional communicator for over 45 years and has taught courses in communication and communication-related subjects for a number of national and international training/development organizations including PetroSkills, Energy Delta Institute (The Netherlands), The Learning Tree (Malaysia), Integrative Learning & Consulting, Ltd. (Singapore), and the Oxford Management Centre (UK/UAE). He is currently President of Pelton Communications, LLC and holds degrees from Cornell University, The New England Conservatory of Music, and the University of Cincinnati. He has performed for, and spoken to, audiences in the United States, Central and Western Europe, Armenia, Azerbaijan, Russia, The Ukraine, Africa, The Middle East, and Southeast Asia. He has also taught at major US colleges and universities and has done voice over work and been an active seminar/workshop trainer/facilitator for businesses and organizations in California, Colorado, Illinois, Louisiana, Massachusetts, New York, Rhode Island, Texas, Virginia and in Angola, Canada, Australia, England, Germany, Holland, Ireland, Kazakhstan, Wales, the Czech and Slovak Republics, Benin, and Nigeria. Today he is a member of numerous training institutes and societies and enjoys a national and international reputation as a communications consultant, lecturer, trainer, and coach. He can be reached at

How To Save Costly Project Engineering Time With This Innovative Application of Response Surface Models (RSM)

posted by Guest Author Nate Kaemingk on Feb. 2, 2018

Lead engineers are incredibly overworked and their time is disproportionately valuable compared to some more junior engineers. But when it comes to doing project cost estimations, we don't have much of a choice but to ask some of these high-value engineers for the estimates if we want a realistic level of accuracy. Plus, the unfortunate reality is that many project costs end up being too high to justify the screening business case, so the project is canceled, and the high-value engineering time is wasted. I found a unique solution to this time sink using RSM to create a Ballpark Project Cost Estimator.

Not only did the ballpark estimator reduce engineering time spent on early phase projects, it also shortened the market opportunity evaluation timeline. This enabled a level of market opportunity screening that the organization had never experienced before. It ended up being an incredibly useful business tool that I wish more organizations had the benefit of using. I am excited to share the 5 steps to creating your own Ballpark Project Cost Estimator.

  1. Build and Define Structured Cost Driver Definitions
    Develop a list of items that are most likely to drive project cost. Things like new suppliers, re-use of new or existing product platforms, level of tear up/re-work, project timeline and so forth. 7-15 factors is probably reasonable. Then define very clearly what each scoring level of each factor would be. In one case, we used 1,3,9 ordinal scaling for each level, since that was the numbering we used habitually. In the example, we're using 1, 2, and 3. Any ordinal, interval or ratio scale of measurement can work as long as responses are defined clearly enough. Figure 1 shows a few examples of defined factor level descriptors.

Figure 1. Project cost driver factor level definitions example. This is the recommended level of structure around each factor scoring level.

  1. Survey Qualified Personnel
    Once the structure around consistently defining scores is built, ask the project manager and chief engineer to score all of the projects which were run in recent history. We used projects from the last 5–7 years, but what your organization uses will depend on project length and reasonable confidence that people will remember well enough to score fairly.
  2. Analyze
    With the scores for each factor and the actual finance data for each project, use the Historical Data Model in Design-Expert® software. We're going to mostly use Numeric Factors with Discrete Responses at 3 levels. If you decide to define your inputs on a sliding scale, then you would do this differently.


Figure 2. Historical Data Design for the sample project. We’re using 3 discrete levels for numerical factors to analyze the structured survey data.

In a real application, I found that I only had enough projects to build a linear model of the predicted expense for a given score of the twelve tri-level ordinal factors. In the sample, since I'm using fewer factors I have enough data for a higher-level model so I'm going to use it just because I can! Tip: when entering the design data, right click in the top left area of the data table and add a comments column. Or, select View > Display Columns > Comments. Put the project name in that column so that we can view it later on during the analysis phase.

In some real applications, there were some areas of the modeled space which had almost no data. But that is actually not a problem at all if we think critically about it. Since future projects will most likely look like projects that have been done in the past, there should be few projects that are in areas of the design space that don't have any data. Figure 2 shows one area of the model that illogically would cost less than zero dollars. This area has no actual data and illustrates this point.

Being aware of this limitation is why we implemented some of the process steps in step 5 around our understanding of the limitations of this tool. Figure 2 also shows the power of the crosshairs window view. It is showing that in the current area, the ballpark project cost is ~$6.5M, with a 95% CI Low of $3.5M and 95% CI High of $9.4M. That's a fairly wide range, but it's good enough to start a conversation about whether the project is worth investing in.


Figure 3. RSM screenshot of the sample data with cross-hairs window open from View > Show Crosshairs Window

  1. Test and Add Supporting Information
    Once we had the model built, we were able to compare the prediction of the model with some recent engineering project estimates—and they were freakishly accurate. We also added some additional capability when a model projection was made. We found that if you compare the product of all the products of the actual coefficient and factor scores (contrast that with the sum of products of actual coefficient and factor scores used for the Actual Equation), there was a nice correlation between the projects that all had similar scores. So we used that to do a reverse lookup and pull in which projects were similar. (Yes, there is a risk of two equally weighted factors being aliased, but we were OK with that since the use of the result is primarily subjective).

As a result, anytime someone used the model, it would spit out a projected value and a list of the projects that were the closest in terms of similar "product of product" scores. To use Design-Expert's built-in capability here, go to Display Options > Design Points > Show and the actual points you measured will show up on the interactive plots. This will also show the project name that you previously added to the comments column in the design data entry.

  1. Develop Process that Supports the Intention of the Tool
    In real-world use, we made sure to cover the limitations of the tool with careful consideration of its use within a process. When the tool was done, we knew what it was capable of, but also knew what it wasn't capable of. So we made sure to develop an appropriate process that supported when and where the tool was used. The tool was used early on in project chartering and market profitability analysis. We wanted to avoid ever having an engineer held responsible for a budget that came from the ballpark estimators, we only wanted to use them to reduce the number of weeks our highly talented engineers spent doing estimates that didn't require a high level of accountability.

With some very structured definitions of project cost driver characterization and Design-Expert software we were able to nearly eliminate the time that high-value engineers spent on early-stage project cost estimations. This enabled our product planning, strategy, and budgeting offices to speed up their early stage planning while reducing the load on our overtaxed engineers. We also built some process around the limitations of the tool to ensure that the organization wouldn't end up in a situation without clear lines of accountability. This is a great example of the many ways that DOE, RSM, and statistical methods can streamline business planning.

About the Guest Author
Nate Kaemingk is an experienced project manager, consultant, and founder of Small Business Decisions. He writes about business decision making and the unique business solutions that are possible by combining statistics with business. His focus is on providing every business decision-maker with access to clear, concise, and effective tools to help them make better decisions. For more information, visit his web site above, or e-mail him.

Five Keys to Increase ROI for DOE On-Site Training

posted by Shari on Dec. 12, 2017

A recent discussion with a client led to these questions—“How do we keep design of experiments (DOE) training “alive” so that long-term benefits can be seen? How do we ensure our employees will apply their new-found skills to positively impact the business?” In my 20+ years as a DOE consultant and trainer, I have seen many companies who invested in on-site training, only to have it die a quick death mere days after the instructor leaves. On the other hand, we have long-term relationships with clients who have fully integrated design of experiments into the very culture of their research and development, and wouldn’t consider doing it any other way. What are the keys that lead the latter to success?

Key #1: Top-Down Management Support
Management must focus on long-term results versus short-term fixes. Design of experiments is a key tool to gain a fundamental understanding of processes. When combined with basic scientific and engineering knowledge, it helps technical professionals discover the critical interactions that drive the process. It’s not free, experimentation costs time and money. But forward-thinking companies understand that the long-term gains are worth the short-term expense. Management needs to buy-in to the use of DOE as a strategic initiative for future success.

Key #2: Data-Driven Decisions
Long-term success is achieved when management insists on using data to make decisions. My first engineering role was in a company that told us “All decisions are made based on data.” Engineers were expected to collect data and bring it to the table. DOE was one of the preferred methods to collect and analyze data to make those decisions. Key #2 is ingraining the expectation into the business that data-driven results will benefit the company longer than gut-feel decisions.

Key #3: Peer-to-Peer Learning
People like to learn from each other. Training can be sustained by learning from DOE’s done by peers. One way to support this is to plan monthly “lunch and learn” sessions. Everyone brings their own lunch (or order pizza!) and have 2-3 people do informal presentations of either an experiment recently completed, or their proposed plan for a future experiment. If the experiment is completed, review the data analysis, lessons learned, and future plans. If it is a proposed DOE plan, discuss potential barriers and roadblocks, and then brainstorm options for solving them. The entire session should be run in an open and educational atmosphere, with the focus on learning from each other. This key demonstrates the practical application of DOE and inherently encourages others to try it.

Key #4: Practice, Practice, Practice
Company management should plan that the output of on-site training is a specific project to apply DOE. Teams should plan an experiment that can be run as soon as possible to reinforce the concepts learned. As DOE’s are completed, the data can be shared with classmates simply to provide everyone with some practice datasets. The mantra “use it or lose it” is very true with data analysis skills and setting aside some time to get together and review company data will go a long way towards reinforcing the skills recently learned. Schedule a follow-up webinar with the instructor if more guidance is needed.

Key #5: Local Champions
There are always a couple of people who gravitate naturally towards data analysis. These people just seem to “get it”. Invest in those people by providing them with additional training so that they can become in-house mentors for others. This builds their professional reputation and creates a positive, driving force within the company for sustainability.

The investment in on-site training should include a company plan to sustain the education long-term. Good management support is an essential start, establishing expectations on using design of experiments and other statistical tools. Employees should then be connected with champions, followed by opportunities to apply DOE’s and share practical learning experiences with their peers.

Adding Intervals to Optimization Graphs

posted by Heidi on Oct. 18, 2017

Design-Expert® software provides powerful features to add confidence, prediction, or tolerance intervals to its graphical optimization plots. All users can benefit by seeing how this provides a more conservative ‘sweet spot’. However, this innovative enhancement is of particular value for those in the pharmaceutical industry who hope to satisfy the US FDA’s QbD (quality by design) requirements.

Here are the definitions:

Confidence Interval (CI): an interval that covers a population parameter (like a mean) with a pre-determined confidence level (such as 95%.)

Prediction Interval (PI): an interval that covers a future outcome from the same population with a pre-determined confidence level.

Tolerance Interval (TI): an interval that covers a fixed proportion of outcomes from the population with a pre-determined confidence level for estimating the population mean and standard deviation. (For example, 99% of the product will be in spec with 95% confidence.)

Note that a confidence interval contains a parameter (σ, μ, ρ, etc.) with “1-alpha” confidence, while a tolerance interval contains a fixed proportion of a population with “1-alpha” confidence.

These intervals are displayed numerically under Point Prediction as shown in Figure 1. They can be added as interval bands in graphical optimization, as shown in Figure 2. (Data is taken from our microwave popcorn DOE case, available upon request.) This pictorial representation is great for QbD purposes because it helps focus the experimenter on the region where they are most likely to get consistent production results. The confidence levels (alpha value) and population proportion can be changed under the Edit Preferences option.



Choosing the Best Design for Process Optimization

posted by Shari on Aug. 29, 2017

Ever wonder what the difference is between the various response surface method (RSM) optimization design options? To help you choose the best design for your experiment, I’ve put together a list of things you should know about each of the three primary response surface designs—Central Composite, Box-Behnken, and Optimal.

Central Composite Design (CCD)

  • Developed for estimating a quadratic model
  • Created from a two-level factorial design, and augmented with center points and axial points
  • Relatively insensitive to missing data
  • Features five levels for each factor (Note: The number of levels can be reduced by choosing alpha=1.0, a face-centered CCD which has only three levels for each factor.)
  • Provides excellent prediction capability near the center (bullseye) of the design space

Box-Behnken Design (BBD)

  • Created for estimating a quadratic model
  • Requires only three levels for each factor
  • Requires specific positioning of design points
  • Provides strong coefficient estimates near the center of the design space, but falls short at the corners of the cube (no design points there)
  • BBD vs CCD: If you end up missing any runs, the accuracy of the remaining runs in the BBD becomes critical to the dependability of the model, so go with the more robust CCD if you often lose runs or mismeasure responses.

Optimal Design

  • Customize for fitting a linear, quadratic or cubic model (Note: In Design-Expert® software you can change the user preferences to get up to a 6th order model.)
  • Produce many levels when augmented as suggested by Design-Expert, but these can be limited by choosing the discrete factor option
  • Design points are positioned mathematically according to the number of factors and the desired model, therefore the points are not at any specific positions—they are simply spread out in the design space to meet the optimality criteria, particularly when using the coordinate exchange algorithm
  • The default optimality for “I” chooses points to minimize the integral of the prediction variance across the design space, thus providing good response estimation throughout the experimental region.
  • Other comments: If you have knowledge of the subject matter, you can edit the desired model by removing the terms that you know are not significant or can't exist. This will decrease the required number of runs. Also, you can also add constraints to your design space, for instance to exclude particular factor combinations that must be avoided, e.g., high-temperature and high time for cooking.

For an in-depth exploration of both factorial and response surface methods, attend Stat-Ease’s Modern DOE for Process Optimization workshop.

Shari Kraber