Building from our successful 2019 analytics conference, co-hosted by Stat-Ease and Camo Analytics, we are once again partnering to bring you a full week of technical skills education! Start with the 2-day Experiment Design Made Easy workshop on March 9-10, focusing on factorial design of experiments (DOE). These highly efficient designs help you discover those key factors and interactions that bring about breakthrough achievements in this new year! Follow this up with the 3-day Multivariate Data Analysis – Level 1 workshop on March 11-13, where you will learn how to use methods such as Principle Components Analysis (PCA) and Partial Least Squares (PLS) to identify important relationships between variables. In both courses, learn to use top-notch graphical visualization to effectively communicate your results!

These courses have something for everyone – you do not need any prior experience to get significant value from them! They are designed for individuals working in R&D, product development, process optimization, and others from a wide variety of industries.

Our highly-experienced instructors will guide attendees through these powerful tools, with a high level of interactivity along the way. They provide hands-on instruction, with all topics illustrated by practical exercises using Design-Expert® and Unscrambler software packages.

Click on the links above for more information about either workshop. Register for either one, or both for additional savings. Early Bird and multi-student discounts may be available. Contact workshops@statease.com if you have questions. We look forward to seeing you!

Don't forget to check out our 8th European DOE Meeting, held in Groningen, Netherlands in 2020.

**European DOE Meeting**

- Co-sponsored by Stat-Ease, Inc. (USA) and Science Plus Group (Netherlands)
- Date: June 18-19, 2020 (Save the Date!)
- Location: Het Kasteel, Groningen, Netherlands
- Theme: “Make the Most from Every Experiment”

Do you have a story to tell? Share your design of experiments (DOE) success with us. We invite you to submit an abstract to speak at the 2020 European DOE Meeting.

Stat-Ease and Science Plus Group are partnering together to host the premier conference on the practical applications of design of experiments. Topics feature using the tools of factorial design, response surface methods, and mixture design to solve business problems.

The 2020 European DOE Meeting is the perfect venue to learn how others are using these statistical techniques to dramatically impact the bottom line. Industries include, but are not limited to: pharmaceutical, medical device, electronics, food science, oil and gas, chemical processes, aerospace, etc. Presentation length: approximately 25 minutes.

The program committee is looking for presentations that:

- Describe real-world problems solved by implementing DOE.
- Illustrate a successful DOE using Design-Expert® software, including what breakthroughs were made and lessons learned.
- Showcase business results achieved using DOE and Design-Expert.
- Inspire others to use DOE.

Speakers (one per presentation) will be given discounted registration rates.

The conference will include a pre-conference short-course, keynote speakers, and some fun evening events.

Abstracts must include:

- Author Name
- Affiliation
- Phone number
- Mailing address
- Email address
- Abstract – limited to 1 page

Submit abstracts (up to 1 page) to the program committee at conference@statease.com

Submission Deadline: February 15, 2020

*This blog post is from James Cawse, Consultant and Principal at Cawse and Effect, LLC. Jim uses his unique blend of chemical knowledge, statistical skills, industrial process experience, and quality commitment to find solutions for his client's difficult experimental and process problems. He received his Ph.D. in Organic Chemistry from Stanford University. On top of all that, he's a great guy! Visit his website (link above) to find out more about Jim, his background, and his company.*

The basic rationale for using a statistically based DOE in any science are straightforward. The DOE method provides:

- Points distributed in a rational fashion throughout “experimental space”.
- Noise reduction by averaging and application of efficient statistical tools.
- ‘Synergy’, typically the result of the interactions of two or more factors - easily determined in a DOE.
- An equation (model) that can then be used to predict further results and optimize the system.

DOE works so well in most scientific disciplines because Mother Nature is kind. In general:

- Most experiments can be performed with small numbers of ’well behaved‘ factors, typically simple numeric or qualitative at 2-3 levels
- Interactions typically involve only 2 factors. Three level and higher interactions are ignored.
- The experimental space is relatively smooth; there are no cliffs (e.g. phase changes).

*Y = B _{0} + B_{1x1} + B_{2x2} + B_{12x1x2} + B_{11x12} +… *

In contrast, chemistry offers unique challenges to the team of experimenter and statistician. Chemistry is a science replete with nonlinearities, complex interactions, and nonquantitative factors and responses. Chemical experiments require more forethought and better planning than most DOE’s. Chemistry-specific elements must be considered.

Above all, chemists make mixtures of ‘stuff’. These may be catalysts, drugs, personal care items, petrochemicals, or others. A beginner trying to apply DOE to a mixture system may think to start with a conventional cubic factorial design. It soon becomes clear, however, that there is an impossible situation when the (+1, +1, +1) corner requires 100% of A and B and C! The actual experimental space of a mixture is a triangular simplex. This can be rotated into the plane to show a simplex design, and it can easily be extended to high dimensions such as a tetrahedron.

It is rare that a real mixture experiment will actually use 100% of the components as points. A real experiment with be constrained by upper and lower bounds, or by proportionality requirements. The active ingredients may also be tiny amounts in a solvent. The response to a mixture may be a function of the amount used (fertilizers or insecticides, for example). And the conditions of the process which the mixture is used in may also be important, as in baking a cake – or optimizing a pharmaceutical reaction. All of these will require special designs.

Fortunately, all of these simple and complex mixture designs have been extensively studied and are covered by Cornell^{3}, Anderson et al^{4}, and Design-Expert^{®} software.

The goal of a kinetics study is an __equation__ which describes the progress of the reaction. The fundamental reality of chemical kinetics is

*Rate = f(concentrations, temperature).*

However, the form of the equation is highly dependent on the details of the reaction mechanism! The very simplest reaction has the first-order form

*Rate = k*C1*

which is easily treated by regression. The next most complex reaction has the form

*Rate = k*C1*C2 *

in which the critical factors are multiplied – no longer the additive form of a typical linear model. The complexity continues to increase with multistep reactions.

Catalysis studies are chemical kinetics taken to the highest degree of complication! In industry, catalysts are often improved over years or decades. This process frequently results in increasingly complex catalyst formulations with components which interact in increasingly complex ways. A basic catalyst may have as many as five active co-catalysts. We now find multiple 2-factor interactions pointing to 3-factor interactions. As the catalyst is further refined, the Law of Diminishing Returns sets in. As you get closer to the theoretical limit – any improvement disappears in the noise!

As we look at the actual chemicals which may appear as factors in our experiments, we often find numbers appearing as part of their names. Often the only difference among these molecules is the length of the chain (C-12, 14, 16, 18) and it is tempting to incorporate this as numeric levels of the factor. Actually, this is a qualitative factor; calling it numeric invites serious error! The correct description, now available in Design-Expert, is ’Discrete Numeric’.

The real message, however, is that the experimenters must never take off their ’chemist hat‘ when putting on a ’statistics hat’!

Reference Materials:

- Leardi, R., "Experimental design in chemistry: A tutorial." Anal Chim Acta 2009, 652 (1-2), 161-72.
- Box, G. E. P.; Hunter, J. S.; Hunter, W. G., Statistics for Experimenters. 2nd ed.; Wiley-Interscience: Hoboken, NJ, 2005.
- Cornell, J. A., Experiments with Mixtures. 3rd ed.; John Wiley and Sons: New York, 2002.
- Anderson, M.J.; Whitcomb, P.J.; Bezener, M.A.; Formulation Simplified; Routledge: New York, 2018.

[Disclaimer: I’m not a statistician. Nor do I want you to think that I am. I am a marketing guy (with a few years of biochemistry lab experience) learning the basics of statistics, design of experiments (DOE) in particular. This series of blog posts is meant to be a light-hearted chronicle of my travels in the land of DOE, not be a text book for statistics. So please, take it as it is meant to be taken. Thanks!]

So, I’ve gotten thru some of the basics (**Greg's DOE Adventure: Important Statistical Concepts behind DOE** and **Greg’s DOE Adventure - Simple Comparisons**). These are the ‘building blocks’ of design of experiments (DOE). However, I haven’t explored actual DOE. I start today with factorial design.

Factorial design (aka factorial DOE) allow you to experiment on many factors (oh, that’s where the name comes from!) at the same time. A simple version of this: 2 factors, each has two levels. [Mathematically, this is represented by 2 to the power of 2, or 2^{2}.] Example time! Cooking Spaghetti. The two factors are temperature of the water and cooking time in that water. Levels are high temperature (100 deg C) and low temperature (80 deg C); and short time in the water and long time in the water. What’s the reason for the experiment? Optimization of the process to make the best tasting (al dente) spaghetti.

We can illustrate like this:

We can illustrate like this:

In this case, the horizontal line (x-axis) is time and vertical line (y-axis) is temperature. The area in the box formed is called the Experimental Space. Each corner of this box is labeled as follows:

1 – low time, low temperature (resulting in crunchy, matchstick-like pasta), which can be coded minus-minus (-,-)

2 – high time, low temperature (+,-)

3 – low time, high temperature (-,+)

4 – high time, high temperature (making a mushy mass of nasty) (+,+)

One takeaway at this point is that when a test is run at each point above, we have 2 results for each level of each factor (i.e. 2 tests at low time, 2 tests at high time). In factorial design, the estimates of the effects (that the factors have on the results) is based on the average of these two points; increasing the statistical power of the experiment.

Power is the chance that an effect will be found, when there is an effect to be found. In statistical speak, power is the probability that an experiment correctly rejects the null hypothesis when the alternate hypothesis is true.

If we look at the same experiment from the perspective of altering just one factor at a time (OFAT), things change a bit. In OFAT, we start at point #1 (low time, low temp) just like in the Factorial model we just outlined (illustrated below).

Here, we go from point #1 to #2 by lengthening the time in the water. Then we would go from #1 to #3 by changing the temperature. See how this limits the number of data points we have? To get the same power as the Factorial design, the experimenter will have to make 6 different tests (2 runs at each point) in order to get the same power in the experiment.

After seeing these results of Factorial Design vs OFAT, you may be wondering why OFAT is still used. First of all, OFAT is what we are taught from a young age in most science classes. It’s easy for us, as humans, to comprehend. When multiple factors are changed at the same time, we don’t process that information too well. The advantage these days is that we live in a computerized world. A computer running software like Design-Expert®, can break it all down by doing the math for us and helping us visualize the results.

Additionally, with the factorial design, because we have results from all 4 corners of the design space, we have a good idea what is happening in the upper right-hand area of the map. This allows us to look for interactions between factors.

That is my introduction to Factorial Design. I will be looking at more of the statistical end of this method in the next post or two. I’ll try to dive in a little deeper to get a better understanding of the method.

Expand your design of experiments (DOE) expertise at the 2019 Fall Technical Conference.

Martin Bezener will be teaching a pre-conference short course on Practical DOE and giving a session talk on binary data (abstracts are below). Shari Kraber will be hosting our exhibit booth and can discuss your DOE needs.

**Short Course Abstract (Wed, Sep 25): Practical DOE: ‘Tricks of the Trade’**

In this dynamic short-course, Stat-Ease consultant Martin Bezener reveals DOE tricks of the trade that make the most from statistical design and analysis of experiments. Come and learn many secrets for design of experiment (DOE) success, such as:

- How to build irregularly-shaped DOE spaces that cover your region of interest
- Using logistic regression to get the most from binomial data such as a pass/fail response
- Clever tweaks to numerical optimization
- Cool tools for augmenting a completed experiment to capture a peak beyond its reach
- Other valuable tips and tricks as time allows and interest expressed

**Session 6A Abstract (Fri, Sep 27, 1:30pm): Practical Considerations in the Design of Experiments for Binary Data**

Binary data is very common in experimental work. In some situations, a continuous response is not possible to measure. While the analysis of binary data is a well-developed field with an abundance of tools, design of experiments (DOE) for binary data has received little attention, especially in practical aspects that are most useful to experimenters. Most of the work in our experience has been too theoretical to put into practice. Many of the well-established designs that assume a continuous response don’t work well for binary data yet are often used for teaching and consulting purposes. In this talk, I will briefly motivate the problem with some real-life examples we’ve seen in our consulting work. I will then provide a review of the work that has been done up to this point. Then I will explain some outstanding open problems and propose some solutions. Some simulation results and a case study will conclude the talk.

Be sure to mark these as must attend events on your FTC schedule!

**Hurry – Early Bird Registration ends Aug 25. Hotel block ends Aug 27. Final Registration ends September 13.**

Links for more info: