User-defined designs include all points from a specified candidate set. If continuous factors are used, the candidate set will be based upon the best points to fit a polynomial model. The candidate set can be created from user-specified (a.k.a. discrete) levels as well.

**Numeric Factors**: How many numeric factors are involved in this experiment?

**Categoric Factors**: How many categoric factors are involved in the experiment?

**Name**: (defaults to alphabetically ascending letters) Enter a descriptive name
for each factor.

**Units**: (optional) Enter the units of measure for each factor.

**Type**:

Numeric Factors(to fit polynomial models)

Continuous: (default) Defines a range for the factor settings. Any value between the low and high level is available for the experiment.

Discrete: Defines the factor settings that available to the experiment for an otherwise continuous factor. Using discrete factor settings can make the experiment more convenient to conduct, while having minimal impact on the strength of the analysis. Check the evaluation node output for a design built with continuous factor settings versus one built with discrete settings to see the impact on the analysis. A discrete factor must have at least one more level than the order of the model needed to fit the response surface. (e.g. three levels are needed for a quadratic model, four levels are needed for a cubic model, etc.)Only enough levels to fit the design model and provide a lack-of-fit test will be used; there is no requirement or guarantee that all the specified discrete settings will be used.

**Categoric Factors** (to compare treatments)

Nominal: (default) This type of factor is one that simply uses names or classes to describe the levels, for instance peanut butter types (Creamy, Chunky, SuperChunk).

Ordinal: This type of factor uses numbers that are ordered to show the natural progression, for instance temperature (200, 250, 300 Kelvin), where the baseline is the first level. These will be analyzed using orthogonal polynomial contrasts, which can be broken down into linear, quadratic, cubic, etc. components.

All levels and combinations of levels of categoric factors required to fit the design model will be included in the design.

Note

Instead of using ordinal contrasts you may be better off creating a discrete numeric factor.

**Levels**: If Type is continuous then only the low and high limits for the factor
need to be defined. If Type is discrete then the number of levels (N) allowed
needs to be entered. For categoric factors provide the number of levels.

**L[i]**: Specifies the setting to use in the experiment. L[1] is always the
lowest setting for a numeric variable. The value of the level must increase with
i. For categoric factors specify the exact spelling and punctuation for each of
the treatments.

**Edit Constraints:** Click this button to impose constraints on the numeric
variables. Use this when some of the extreme combinations of the numeric factors
will not produce a useful and/or measurable response. For more details use the
help button on the Edit Constraints dialog.