Case Studies and White Papers


In Pursuit of Optimal Weld Parameters: The How To

Published: December 2014
Author: Chris Bertoni

This article offers a five-step method to finding the optimum or "best" weld. The method detailed below utilizes a statistical tool known as the two-level factor approach. This well-tested method will assist an investigator in identifying what is to be optimized, choosing inputs for evaluation, running the tests so that statistically significant data is generated, analyzing data, and finally determining the settings for the significant inputs which result in the optimum weld.

Publication: Welding Design & Fabrication (now American Machinist)

Published: November 2014
Author: Wilhelm Kleppman

Learn how DOE and response surface methods (RSM) catalyze process development and optimization (requires membership to view).

Publication: Chemical Engineering

Published: June 2014
Author: Ron Stites

An industrial equipment supplier wanted to find the best operating conditions, as well as determine what performance its product could deliver for ethanol producers, before putting the device on the market. A DOE was run to successfully identify and validate a measurement method that has enabled the supplier to accurately evaluate the performance of the new product in a large number of plants under a wide range of operating conditions.

Publication: Ethanol Producer Magazine

Published: June 2014
Author: OMG Borchers

OMG Borchers paint-chemists were challenged to find a second source for an associative thickener. They set up a mixture design of experiment to screen the effects of four candidate additives. Aided by Design-Expert software, they accomplished their mission in a timely fashion. When the new formulation was prepared and tested, its performance in every application could not be discerned from the incumbent.

Publication: Paint & Coatings Industry

Published: March 2014
Authors: Mark Anderson, Patrick Whitcomb

Due to operational or physical considerations, standard factorial and response surface method (RSM) design of experiments (DOE) often prove to be unsuitable. In such cases a computer-generated statistically-optimal design fills the breech. This article explores vital mathematical properties for evaluating alternative designs with a focus on what is really important for industrial experimenters. To assess “goodness of design” such evaluations must consider the model choice, specific optimality criteria (in particular D and I), precision of estimation based on the fraction of design space (FDS), the number of runs to achieve required precision, lack-of-fit testing, and so forth. With a focus on RSM, all these issues are considered at a practical level, keeping engineers and scientists in mind. This brings to the forefront such considerations as subject-matter knowledge from first principles and experience, factor choice and the feasibility of the experiment design.

Publication: Journal of Statistical Science and Application

Employing Power to "Right-Size" Design of Experiments

Published: March 2014
Authors: Mark Anderson, Patrick Whitcomb

This article provides insights on how many runs are required to make it very likely that a test will reveal any important effects. Due to the mathematical complexities of multifactor design of experiments (DOE) matrices, the calculations for adequate power and precision are not practical to do by 'hand' so the focus is kept at a high level--scoping out the forest rather than detailing all the trees. By example, reader will learn the price that must be paid for an adequately-sized experiment and the penalty incurred by conveniently grouping hard-to-change factors.

Publication: The ITEA Journal

Improved Copper and Gold Recovery at KGHM International’s Robinson Mine

Published: January 2014
Authors: Lorin Redden, Chase Stevens, Mark O'Brien, Thomas Bender

In an effort to recover additional copper and gold at KGHM International's Robinson Mine located near Ruth, Nevada, an in-plant study was undertaken to quantify potential flotation recoveries from the concentrator's final tailings stream. Tests were conducted by passing a small continuous sample of final tailings through a single 1.5 m3 FLSmidth XCELL™ demonstration flotation machine. This paper reviews the results obtained from the in-plant testing with the single 1.5 m3 flotation cell and provides a comparison to the subsequent operational performance of multiple 160 m3 flotation machines. The DOE test campaign produced a highly reliable Copper Tailings Grade Model. Actual operational data validated the performance of the predictive model and pilot cell testing. The full-scale flotation plant achieved a 27.1% recovery over a three-year period. The added recovery has increased copper production by 5.95 million kg annually and gold by a significant amount. (Proceedings from 2013 Copper International Conference, Santiago, Chile, Dec 1-4, Session MP44.)

Published: August 2013
Authors: Yahya Kaya, Greg Piepel, Erdal Caniyilmaz

Experimental design, modeling, and data analysis methods for mixture experiments provide for efficiently determining the component proportions that will yield a product with desired properties. This article presents a case study of the work performed to develop a new rubber formulation for an o-ring (a circular gasket) with requirements specified on 10 product properties. Progress in Rubber, Plastics and Recycling Technology, Vol. 29, No. 3, 2013

Note: If interested, you may contact one of the authors, Greg Piepel, Ph.D., for a copy of the paper.

Publication: Progress in Rubber, Plastics and Recycling Technology

DOE Improves Throughput in Manufacturing of Key Intermediate

Published: July 2013
Author: Steve Collier

Researchers at Codexis , a California-based, worldwide leader in protein engineering, used Design-Expert software to improve the performance of an enzyme. Their DOE rapidly developed an efficient catalytic manufacturing process for manufacturing, resulting in high throughput yield of product with excellent selectivity and purity.

Publication: Pharmaceutical Manufacturing

Published: June 2013
Author: Cheryl Scott

Design of experiments (DoE) incorporates statistical methods and multivariate analysis into microscale chemistry. Controlled experiments help analysts evaluate processes with that involve several variables, such as temperature and osmolality in cell culture processes. Often three variables are studied together, with the results expressed in a three-dimensional response-surface graphs.

Publication: BioProcess International