How Can I Convince Colleagues Working on Formulations to Use Mixture Design Rather than Factorials or Response Surface Methods as They Would Do for Process Studies?

Martin Bezener, PhD. on Aug. 12, 2019

We recently published the July-August edition of The DOE FAQ Alert. One of the items in that publication was the question below, and it's too interesting not to share here as well.

Original question from a Research Scientist:

"Empowered by the Stat-Ease class on mixture DOE and the use of Design-Expert, I have put these tools to good use for the past couple of years. However, I am having to more and more defend why a mixture design is more appropriate than factorials or response surface methods when experimenting on formulations. Do you have any resources, blogs posts, or real-world data that would better articulate why trying to use a full factorial or central composite design on mixture components is not the most effective option?"

Answer from Stat-Ease Consultant Martin Bezener:

“First, I assume you are talking about factorials or response surface method (RSM) designs involving the proportions of the components. It makes no sense to use a factorial or RSM if you are dealing with amounts, since doubling the amount of everything should not affect the response, but it will in a factorial or response-surface model.

"There are some major issues with factorial designs. For one thing, the upper bounds of all the components need to sum to less than 1. For example, let’s say you experimented on three components with the following ranges:

A. X1: 10 - 20%
B. X2: 5 - 6%
C. X3: 10 - 90%

then the full-factorial design would lay out a run at all-maximum levels, which makes no sense as that gives a total of 116% (20+6+90). Oftentimes people get away with this because there is a filler component (like water) that takes the formulation to a fixed total of 100%, but this doesn't always happen.

"Also, a factorial design will only consider the extreme combinations (lows/highs) of the mixture. So, you'll get tons of vertices but no points in the interior of the space. This is a waste of resources, since a factorial design doesn't allow fitting anything beyond an interaction model.

"An RSM design can be ‘crammed’ into mixture space to allow curvature fits, but this is generally a very poor design choice. Using ratios of components provides a work-around, but that has its own problems.

"Whenever you try to make the problem fit the design (rather than the other way around), you lose valuable information. A very nice illustration of this was provided in the by Mark Anderson in his article on the “Peril of Parts & the Failure of Fillers as Excuses to Dodge Mixture Design” in the May 2013 Stat-Teaser.”

An addendum from Mark Anderson, Principal of Stat-Ease and author of The DOE FAQ Alert:

"The 'problems' Martin refers to for using ratios (tedious math!) are detailed in RSM Simplified Chapter 11: 'Applying RSM to Mixtures'. You can learn more about this book and the others in the Simplified series ('DOE' and 'Formulation') on our website."


Links for additional information:

Return to blog