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Summary

We present class of equireplicated, irregular fractions of two-series designs constructed
algorithmically using the D-optimality criterion. These designs can be constructed for
even numbers of runs and can take a wider variety of sizes than usual regular and irreg-
ular fractions. We present examples of minimal designs of resolution V and compare
them to some alternatives. We use these designs to form central composite designs
and show that the present designs are more efficient than most competitors.
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1 Introduction

Resolution V fractions of ��� designs are frequently used in experimentation when we want all esti-
mates of main effects and two-factor interactions unaliased with other main effects and two factor
interactions. Regular fractions may be constructed using well-known group theoretic methods;
estimated effects using such fractions are all independent, and the designs are highly efficient. In
many situations, however, regular fractions contain considerably more runs than are necessary to
estimate the ���
	������������	������ effects in the model containing effects up to two-way interac-
tions. For example, the smallest regular resolution V fraction when ���� uses 64 runs to estimate
the 29 parameters in the model. Because of this, numerous irregular fractions have been developed
to provide resolution V designs using fewer runs.

Most irregular fractions are constructed by combining regular fractions. John (1969) constructs
irregular resolution V fractions that contain only three fourths the runs of a regular resolution
V fraction. Addelman (1969) considers designs formed by first producing a very small regular
fraction, and then adding additional fractions from the same family until the combined design has
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resolution V. This is a multistep version of John’s method. Pajak and Addelman (1975) investigate
using fractions from different low-resolution fractional families to form resolution V designs.

A second approach is the use of balanced, saturated designs (Rechtschaffner 1967; Srivastava
and Chopra 1971). These designs are constructed in � � 	 �� � ��  � 	������ runs as the treatment
combination with all factors low, the  combinations with one factor low and all others high, and
the �� �� 	�� � � combinations that have only two factors high. (Other high/low patterns may work,
but this pattern is optimal. See Kim 1993.) This design is balanced in the sense that all the main
effect variances are equal, all the main effect covariances are equal, all the two-factor interaction
effect variances are equal, all the two-factor interaction covariances are equal, and all covariances
between main effects and two-factor interactions are equal. Saturated designs are the smallest
possible designs for a given model, but they have no degrees of freedom for estimating pure error
or lack-of-fit.

Mee (1999) describes a third approach that uses a point exchange search algorithm on a candi-
date set of treatment combinations to find good designs in the D-optimal sense. In particular, Mee
finds good 64-point designs for  equal to 9 and 10. Mee also gives a catalog of recommended
designs of various pedigrees for  from 5 to 11.

Central composite designs are used for collecting data to fit second order models in response
surfaces (Box and Wilson 1951). The central composite design for  factors comprises ��� ����� ��� 
points: ��� center points at the origin, ��� factorial points taken from a full � � factorial at levels � 	 ,
and �  axial points at locations �
	 along each coordinate axis. If the factorial points form a
resolution V design, then the resulting central composite design will be capable of estimating the
full quadratic model, which has � � 	 ��� ����� �� 	�� � � parameters. The overall efficiency of the
resulting design depends on the quality of the factorial points and number of center points.

In fact, the factorial portion of the design need not be resolution V (Hartley 1959); fractions
down to resolution III may be used provided only that two-factor interactions not be aliased to
other two-factor interactions. This allows smaller factorial fractions to be used, and Hartley pub-
lished several examples where the recommended fractional design for the central composite differs
dramatically from the recommend fractional design standing alone. Several authors have contin-
ued the quest for smaller designs. Westlake (1965) published smaller fractions for  of 5, 7, and 9.
Draper (1985) uses Plackett-Burmann designs to form even smaller designs than Westlake’s, again
for  of 5, 7, and 9. Draper and Lin (1990) follows up on this work. Lucas (1974) computes the
D-criterion for saturated composite designs constructed using a subset of points from the saturated
resolution V designs of Rechtschaffner (1967).

Some alternatives to central composite designs include Box-Behnken designs (Box and Behnken
1960), noncentral composite designs (Mee 2001), and augmented pairs designs Morris (2000).

In this article we construct two-level equireplicated irregular fractions with resolution V. A
design is equireplicated if each factor occurs an equal number of times at the high and low levels.
Obviously, equireplicated designs must have an even number of runs. Equireplication is not the
same thing as balance (described above); either can occur without the other. These new designs are
constructed algorithmically to optimize the D-criterion using the columnwise-pairwise algorithm.
The designs may be used on their own as resolution V irregular fractions, and they may also be
used as the factorial component of central composite designs. Section 2 of this paper describes
the algorithm for constructing these designs. Section 3 compares these new designs to existing
resolution V fractions, and Section 4 compares central composite designs constructed using these
fractions to other small central composite designs.
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2 Constructing the designs

Suppose that we wish to construct a resolution V fraction of a  -factor design in � runs. Let � be
the � by  design matrix, with high levels of a factor denoted by 1, and low levels denoted by –1.
We only consider equireplicated designs, so each column contains an equal number of 1’s and –1’s.
Because there are � � 	 �  � ��  � 	���� � model degrees of freedom, � can be any even number
at least that large. The second-order model includes a constant, all main effects, and all two-factor
interactions. Let

�
� be the � by � model matrix for the second-order model. The D-criterion is� �

���
�
�
�
, and we seek designs that give us large values of D. (Alternatively, the D-criterion can be

written as
� �
�
� �

�
� ����� � , and we seek small values of D.)

In principle, we can find the D-optimal design by enumerating and evaluating all eligible de-
signs. In practice, this is usually not feasible. For example, the smallest possible resolution V
design for  �
	 has � � � � , so there are more than 	����� potential designs (though many are
equivalent and many others are resolution less than five). Thus we are forced to use some algo-
rithm to search through a restricted class of test designs.

The most common optimal design algorithms are single-point exchange algorithms. That is,
they use a search that involves replacing a single design point (row of � ) with an alternative design
point; the replacement is accepted if it increases D. We cannot use those algorithms in our situation,
because we seek equireplicated designs, and the current design point is the only one that maintains
equireplication. Thus any point exchanges must involve an even number of design points.

We use the columnwise-pairwise (CP) algorithm of Li and Wu (1997) to find our designs. As
might be expected from the “pairwise” in the name, CP is a two-point exchange algorithm. The
idea is as follows. Begin with a equireplicated resolution V design. Consider all designs that are
in a neighborhood of that design, and move to the neighbor that has best D. Now consider all
neighbors of the new design, and continue until we reach a design which has no neighbors with a
better D. The CP algorithm is a typical “greedy” optimization algorithm, always taking the biggest
possible step up, and often finding a local rather than a global optimum.

In the CP algorithm, we consider two design matrices � and ��� to be neighbors if they differ
in only two elements, with both elements in the same column. That is, two designs are neighbors if
one can reach the other design by swapping a +1 and a –1 in the same column, hence columnwise-
pairwise.

As described above, all neighbors are checked at every step, which is �� ��� � ��� neighbors. This
is feasible for small values of � and  , but again becomes burdensome as � and  increase. For
large � and  , we revise the search to limit the computations. For each column, we first find the
+1 value that most improves D if switched to a –1, and having made that change, we find the –1
value in that same column that most improves D if switched to a +1. This restricted neighborhood
search will not, in general, find as good a candidate switch, but it reduces the computations by a
factor of � , which can make the exercise possible.

In the discussion below, we will refer to designs obtained using the full CP algorithm as CP
designs, and those obtained using the faster restricted algorithm as CP � designs.

We must have an initial resolution V design to begin the search. These can generally be con-
structed by hand by using the following types of points:

� base points: all levels at –1;

� linear points: all levels –1 except for a single +1;
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� lag � points: all levels –1 except for two +1’s that are � elements apart (wrapping around to
the start of the list if necessary).

The combination of a base point, all linear points, and all lag � points up to �����  � ��� provides a
resolution V design. Add an additional base point if necessary to make � even. The design can be
made equireplicated by changing the signs of the points. For example, for  � � , use linear points
and lag 1 points as given above, and use lag 2 and lag 3 points and two base points with reversed
signs. With this design, every factor has 15 each of the high and low levels.

The CP algorithm often finds a local optimum rather than a global optimum. It thus makes sense
to try several different starting designs and choose the best of the resulting local optima. We find
alternate starting designs by taking the standard starting design and making random columnwise-
pairwise swaps, accepting any swap that results in a resolution V design. Specifically, we make 100
passes through the columns for �� 	 	 , 200 passes for 	���� 	� 	�� , 300 passes for 	�
�� 	� �� ,
and 400 passes for ����� �� � 	 . For the designs described below we have used 200 random
starting designs.

The major portion of the computational burden is computing the D-criterion after exchanging
points. This computation can be done efficiently by using a Choleski decomposition and rank one
up- and down-dates. Write

�
� �

�
� as ��� � , where � is lower triangular; D is simply the square of

the product of the diagonal elements of � . Rank one up- and down-date algorithms (for example,
DCHUD and DCHDD in LINPACK) can be used to update � when a row is added or removed
from

�
� . These algorithms are much more efficient than recomputing � or D from scratch.

3 Efficiency as Fractions

Several criteria can be used to evaluate the quality of experimental designs. These criteria are based
on � �

�
� �

�
� and �
�
�

�
� �

�
� ����� . As we are designing for D-optimality, it makes sense to compare

designs based on their D-criterion: � � � � � . A related criterion is the average information per
parameter per observation: ����� � � � ����� � � . In the case of two-series designs with all factors at
levels ��	 , the maximum value of ��� is 1 (obtained for orthogonal designs), so that ��� can be taken
as an absolute measure of efficiency.

Many other optimality criteria related to � or � are available. One important criterion is
A-efficiency � � � � � � tr ��� ��� , which gives us the average variance of the estimated parameters
relative to the average variance for an orthogonal design. Further exploration of � can consider the
average variances of the main effects relative to orthogonal designs � � �  � � � tr  ��!����� (where tr  
indicates the sum of the diagonal elements corresponding to main effects) and interactions � � ���� ��	�� � � � � tr " �#� � , or the maximal absolute correlations between main effects $% , interactions $&" ,
and main effects and interactions $� '" .

Table 1 compares CP and CP � designs to several designs given in the literature, including all of
those recommended in Mee (1999). The CP and CP � designs are the best found using 200 random
perturbations of a standard starting design. We have used the CP search for �(�*) � , and the CP �
search for �,+-) � . These new designs are compared to the saturated designs of Rechtschaffner
(1967) for  � 	/. �0.1
0.12 ; the mixed family fraction sequences of Pajak and Addelman (1975) for
 � 	0.12 , the 3/4 replicates of resolution V fractions of John (1969) for  � �0.3
/.12/. 	 �/. 	 	 ; the
irregular fraction sequences of Addelman (1969) for  � �0.12/. 	 �/. 	 	 ; and the point exchange D-
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Table 1: Factorial Efficiencies

 � Design ����� �!� � ��� � � � $& $&" $& '"
6 22 saturated 66.31 .936 .868 .870 .069 .069 .069

22 CP 64.48 .852 .615 .545 .365 .300 .365
24 Pajak and Addelman �� ��� �  60.71 .658 .284 .421 .722 .817 .722
24 CP 66.76 .867 .719 .769 .447 .500 .447

7 29 saturated 90.92 .793 .673 .685 .086 .086 .086
30 CP 93.28 .831 .636 .623 .408 .444 .408
40 Addelman’s (5/16) 2 	 103.68 .893 .757 .862 .408 .714 .408
40 CP 105.59 .953 .918 .925 .200 .143 .200
48 John’s (3/4) 2 	 ��� 110.16 .930 .847 .811 .500 .500 .500
48 CP 111.10 .961 .918 .931 .200 .200 .200

8 37 saturated 118.37 .662 .515 .536 .091 .091 .091
38 CP 126.27 .799 .577 .511 .637 .440 .637
48 John’s (3/4) 2 
 � � 139.03 .893 .767 .762 .500 .500 .500
48 CP 139.58 .906 .808 .857 .328 .328 .328

9 46 saturated 148.70 .551 .399 .426 .089 .089 .089
46 CP 163.12 .754 .505 .476 .418 .395 .418
48 Pajak and Addelman �� ��� � � 163.30 .725 .358 .545 .791 .894 .791
48 CP 166.92 .785 .539 .550 .464 .631 .464
64 Addelman’s (4/32) 2 � 182.99 .835 .657 .750 .577 .577 .577
64 Mee’s D-optimal 185.63 .884 .745 1 .000 .612 .000
64 CP � 187.55 .922 .840 .818 .281 .239 .281
96 John’s (3/4) 2 � � � 206.11 .920 .814 .935 .333 .500 .333
96 CP � 209.04 .980 .960 .955 .103 .126 .103

10 56 CP � 208.32 .737 .453 .464 .440 .589 .440
64 Addelman’s (4/64) 2 � � 218.34 .771 .538 .588 .707 .707 .707
64 Mee’s D-optimal 222.04 .824 .646 1. .000 .500 .000
64 CP � 222.74 .834 .657 .650 .351 .386 .351
96 John’s (3/4) 2 � � �  250.93 .920 .821 .909 .333 .500 .333
96 CP � 253.16 .957 .913 .921 .143 .158 .143

11 68 CP � 263.81 .754 .438 .434 .582 .631 .582
80 Addelman’s (5/128) 2 ��� 267.78 .680 .385 .451 .750 .756 .750
80 CP � 285.20 .882 .736 .750 .323 .324 .323
96 John’s (3/4) 2 ������ 299.10 .905 .791 .815 .500 .500 .500
96 CP � 301.54 .938 .873 .873 .166 .185 .166
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optimal designs of Mee (1999). All of these designs, except for the saturated designs with  of 7
or 8, are equireplicated designs. The minimal run CP designs are listed in the Appendix.

We can draw several conclusions from Table 1. First, except for the saturated design with
 � 	 , the CP algorithm was always able to find an equireplicated design with higher D than
the alternatives from the literature. Second, although we did not show both CP and CP � results
for the same � .  pairs, the CP and CP � algorithms generally give similar optima, with the CP
usually, but not always, yielding a higher D. The difference between the two is typically not enough
to encourage the use of the slower CP algorithm. Third, information per observation generally
increases as � increases for fixed  .

Although we have not shown all 200 local optima found for each � and  combination, it is of
interest to know how good the other 199 designs are. Consider the � � criterion for a given � and 
combination, and divide all 200 ��� ’s obtained from the different starts by the maximal ��� . For 16
different � ,  pairs studied, the upper quartile of the relative ��� was .94 for one pair and was above
.97 for the remaining 15 pairs. Thus the best of ten random starts will typically be very close to
the best of 200 random starts. The worst case designs had relative � � of about .4.

Mee (1999) stated that saturated designs should not be used for  larger than 7, and we certainly
agree. Both � � and � drop rather dramatically for �+ � , although the saturated designs do have
low correlations between estimated effects.

The equivalent family fractional designs of Pajak and Addelman (1975) for �� 	 , � � ��� and
 ��2 , � � � 
 are also not very attractive. Both have low ��� , very low � , and correlations greater
than .7; corresponding CP and CP � designs are better on every measure.

The sequence of fractions designs of Addelman (1969) are reasonably competitive on � � , but
tend to have poor � criteria and large correlations. The corresponding CP and CP � designs are
better on every measure.

The 3/4 replicate designs of John (1969) have good D-criteria, but are a little lower on the �
criteria. The major problem with these designs is several correlations of .5 between estimates.
Once again, the CP and CP � designs are better on every measure.

Finally, the designs of Mee (1999) are good on ��� and A, and are outstanding for the main
effects: orthogonal and fully A-efficient. They do have some large correlations between main
effects and interactions.

Overall, the algorithmically-produced designs, either the CP-type designs presented here or
those of Mee, have better properties than the algebraically-derived designs. They can also be
constructed for a much broader range of � . Algorithmic designs do, of course, suffer from the
necessity of searching for the optimal design.

4 Efficiency in Central Composite Designs

When a resolution V fraction is combined with axial points, we obtain a central composite design
that can fit a second-order polynomial model. Classical CCD’s use regular resolution V fractions,
but these can be larger than is necessary. As was described in Section 1, considerable work has
been done to find smaller composite designs that still enable estimate of the second-order model.

In this section we investigate the use of our CP fractions in CCD’s. These designs will not
usually be saturated designs; that is, CCD formed using our CP fractions will not usually be the
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Table 2: CCD Efficiencies

 � Design ����� ��� ��� ��� ��"
5 22 Draper & Lin’s P-B .955 .259 .130 .140 .197

22 Westlake’s irregular .955 .272 .141 .117 .226
26 Saturated .808 .440 .692 .122 .615

6 28 Draper & Lin’s P-B 1 .263 .071 .111 .237
34 CP .824 .395 .488 .091 .527

7 38 Draper & Lin’s P-B .947 .229 .083 .082 .209
38 Westlake’s irregular .947 .229 .088 .069 .214
44 CP .818 .391 .492 .071 .539
62 John’s 3/4 .581 .439 .666 .052 .702
62 CP .581 .450 .758 .052 .734

8 52 Draper & Lin’s P-B .865 .284 .157 .060 .323
54 CP .833 .384 .434 .057 .532
64 John’s 3/4 .703 .427 .609 .049 .648
64 CP .703 .431 .631 .049 .659

9 58 Draper & Lin’s P-B .948 .155 .050 .036 .137
62 Westlake’s irregular .887 .245 .078 .049 .267
64 CP .859 .372 .407 .047 .509
82 Mee’s irregular .671 .433 .805 .038 .667
82 CP .671 .449 .670 .038 .705

114 John’s 3/4 .482 .451 .817 .027 .759
114 CP .482 .476 .823 .027 .821

10 68 Draper & Lin’s P-B .971 .199 .046 .044 .201
76 CP .868 .372 .412 .039 .511
84 Mee’s irregular .786 .411 .786 .036 .599
84 CP .786 .416 .533 .036 .611

116 John’s 3/4 .569 .460 .693 .025 .722
116 CP .569 .475 .731 .025 .754
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smallest possible design. Nevertheless, these designs are smaller than the standard regular fractions
and are fairly efficient per unit.

We propose the following measures of efficiency for the CCD’s that we will compare. First is
degree of freedom efficiency, ��� � � � � � , which is essentially a measure of design size relative to
minimum size. The other four measures are forms of D-efficiency:

��� � � � � ����� � � �
��� � � � � � ����� � � �
��� � � � � � ����� � � �
��" � � � " � � � �

� � � � ��� ��� � �

where � � �
�
� �

�
� � ��� , and � � , � � , and � " are the submatrices of � corresponding to linear,

quadratic, and interaction terms. These D-efficiencies are information per parameter per obser-
vation. All of our designs will have 	 � 	 , so the maximum value of the D-efficiencies is 1.
Higher ����� designs are smaller, but lower ��� � designs tend to have better D-efficiencies.

We compare the CP-based CCD’s to those suggested by Westlake (1965) and Draper and Lin
(1990), as well as those using the irregular resolution V fractions of John (1969) and Mee (1999).
From Table 2 we can see that CP-based designs are generally higher on all all D-criteria than com-
petitors with the same � . The notable exceptions are for estimating linear effects with  � 20. 	�� ,
for which Mee’s designs are much more efficient. As with Table 1, information per observation
generally increases as sample size increases; a slightly larger design can often have much larger
D-efficiency.

5 Discussion and Conclusions

Resolution V CP designs have attractive efficiencies when used both as irregular fractions and as a
basis for central composite designs. They can be constructed for a much broader range of sample
sizes than are available with standard irregular fractions, giving experimenters more flexibility in
trading off size and availability of efficient designs.

Computation time is an issue for larger designs. Running on a 1.4 GHz Pentium IV, a � �
� �0.  � 	 optimization takes about .6 seconds, whereas a � � 	 	 	/.  � 	�� optimization takes
about 9.3 seconds with our current code. Large designs, say � � � 	��0.  � � � , cannot be done
interactively.

The CP algorithm as described is optimizing the D criterion. There is nothing to prevent op-
timization of an alternate criterion. For example, modifying the algorithm so that it maximizes
the A-efficiency is straightforward. Using A-optimality, the CP algorithm yields the same design
as D-optimality for � � � �0. �� 	 , but for � � 	�� . �� 2 yields a design with a slightly lower
A-efficiency criterion than the design found when optimizing D-efficiency!

The optimality criteria tend to have many local optima, suggesting that several random starts
should be attempted to try to avoid poor local optima. Simulation results indicate that 20 random
starts should be sufficient with high probability.
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Table 1: Resolution V CP design for  � 	 and � � � � .
+ – – – + –
+ – + – + +
– + + – – –
– – – – + +
+ + – + + +
+ + – + – +
+ – – + – +
+ + – – – +
– – – + + –
– – – – – –
+ – + + + –
– + – – + –
+ + + + – +
+ – + – – –
– – + – – +
+ + – + – –
– – + + + +
– – + + – –
– + – + – +
+ + + – + –
– + + + + –
– + + – + +

7 Appendix: CP Designs
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Table 2: Resolution V CP design for  ��� and � �� � .
– + – – – + –
+ – – – – – –
– + + + – + –
+ – + – + – –
– + – + – – +
+ – + + – – –
+ + + + – + +
– + – + + – –
+ – + – – – +
– – – + + – +
+ – + – – + –
– + + + + – +
– – + – – – –
– – + + – + +
+ + – + – – –
+ + – + + – +
+ + – – + + –
– – + + + – –
+ + + – – – –
– + + – – + +
– – – – – – +
– + + – + + –
– + – – + – +
– + – + + + +
– – – – + + –
+ – – + – + +
+ – – – + + +
+ + + – + + +
+ – – + + + –
+ – + + + + +
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Table 3: Resolution V CP design for  �,
 and � �� 
 .
– – + – + – + –
– + + – + + – +
– + + + – – – –
– – – – – – + –
+ + – – + – + –
+ – + + + + + –
– – – + + + – –
+ – – + + – – –
– – + – – + + +
+ + + – + – – +
+ + + – – + – +
+ + – + – – + +
– + – + + – + –
+ – – – – – + +
+ + – + + + + –
– + – – – + + +
+ – + + – + – –
+ – + – + + – –
– – – – – + – –
– + + + – + + +
– + + – – – + +
– + – + + – – +
+ + + + – – + –
– – – + + – + +
+ – + + – – + +
+ – + – – – – –
+ – – + – + + +
+ + – – + + – +
+ + + – + + + +
+ + – – – – – –
– + + – – + + –
– – – – + + + –
– – – + – – – +
+ – + + + + – +
+ + + + + + – –
– – + + + – – +
– – – – + – – +
– + – + – + – –
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Table 4: Resolution V CP design for  �,2 and � � ��	 .
+ + – + – + + + +
+ + + + – + + – +
+ – – + + + + + +
– + + + + – – – –
– – – – – + – + –
+ + – + – + – – –
+ + + + + + – + –
+ – – – + – – + –
+ – + – – – + + +
– + + – – + – + +
+ – – – – + + – +
– + – + – + – – +
+ + + – + – – + +
+ + + + – – – + –
+ + – – – – – – +
+ + + + + – + + –
– + – + + + + – +
+ – + – + + – – –
+ + + – – + + + –
– + – – + + + + +
– – + – + + + – –
– + – – + – – – –
– – – + – – – – –
+ – – + – – + – +
– – – + + + – – –
– – – – + – + – –
– + + – – – + – +
+ – + – – – + – –
– – + + – – + – –
+ + + – + + – – +
+ – – + – + + + –
+ – – + – + – + +
– + + + + – + + +
– – – + – + + + +
– – + – + – – + –
– – + – – – – – +
– – + – + + – + +
+ – + + + – – + +
+ + – – + + + – –
+ + – + + – – – +
– + – – – – + + –
+ – + – + – + – +
– + – + + – + + –
– + + + – + + + –
– – – – + – – + +
– – + + – + – – –

13



Table 5: Resolution V CP design for  � 	�� and � � ) 	 .
+ – – – + – + – – +
+ + – + + – + – + +
– + – – – – – + + –
– – + + – + + + – +
+ + + – + – – + + +
+ – + – + + – – + –
+ + + – – + + – + +
+ + – + – + + + + –
– + + + + – + + + –
+ + + + + + + – – –
– + – – – – + – – +
– – + – + + – + – –
– – + + – + + – + –
– + + – + + + – + –
+ – + + – – + + – –
– – – + – – – – – +
– – – + – + + – + +
+ – + + – + – – – +
– – – – + – + + + +
+ + + – + + – – – +
– + + + – – + – – –
– – + – + – + – + +
+ – – – – – – + – +
+ + + + + – – + – +
– – + – – – + + + –
– + – + – + – + + +
+ – – + + + – + – +
– – + + – – – + – –
+ – – – – – + – + –
– + – + + + + + – –
+ + + – – + – + – –
+ – – + + + + + + –
– – – + + + – – + –
– – – – – + – + + –
– – – + + – + – – –
– – + + + – – + + +
– + – – + – – – – –
– + + – + – + + – +
– – + – – + – – + +
+ – + – – – – – – –
+ – – + – – + + + +
+ – – + + – – + + –
– + – – – + – – – –
– + + + + + – – – +
+ + – – – – – – + +
– + + + – – – – + +
+ – + – + + + + – +
+ + – + – – – – – –
+ + + + + + – + + +
+ – + – – + + – – –
– – – – + + + – – +
– + – – – + + + + +
+ + – + – + + + – +
+ + – – + – + + – –
+ + – – + + – + + –
+ + + + + – – – + –
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Table 6: Resolution V CP design for  � 	 	 and � � 	 
 .
– – – – + + + + + + –
– + + + – – + + + + +
+ – + – + – – – – + –
– – + + + – + – – – +
+ – + – – – + – + + +
– – + – – + – – – + +
– + – + – + – + + + –
+ – – – + – – + – + –
+ – – – – + – + + – –
+ + + + – – – + + – –
– – + + – + – – + – –
+ – – + – – – – – – –
+ + – + + – + + – – +
+ – + – – – – + – – +
– + + – + – – – + + +
– + + – + + + – – + –
– – – – + – – – + – +
+ + + + + + + – + – –
+ + + + – + + – – + +
+ + + + + + – + – – –
– + – – + + – + – + +
+ – + + + – – – + – +
+ + – + – – + + – + –
– – – – + + – + – – –
+ + – + + + + + – + –
+ – – + + – + – – + +
– – – + + + – – – + –
+ – + – + + + + – + +
– + + – – – + – – – +
– + + + + + – + + – +
– – + – + – – + + – –
+ + + – – + – – + – +
– + – – – – – + + + +
+ – + + – + + + + – +
+ + + – + – + + – – –
+ + – + + + – – + + +
+ – + – + + – + + + +
– + – – – + + – + + +
– + + + – + + + – – –
+ – – + – + + – + + –
– + – + – – – – – + +
– – – + – + + + – + +
– – – + – – – + – – +
+ + + – – + + + + + –
– – + + + + + – + + +
– – + – – + + + + – +
– – – – + – + + – – +
+ + – + – + – + + – +
+ + – – – + – – – + –
– + – + + + + – – – +
+ + – – – – – – + + –
– – – – – – + – – – –
– – – + + + + + + – –
+ – + + – + – + – + –
+ + – + – – + – + – +
+ + – – + – – – – – +
– + – + + – + – + + –
+ – + + + – + + + + –
– – + + – – – – + + –
+ + – – + – + + + + +
– + – – + + – + + – –
– – + + + – – + – + +
+ – + – – + + – – – –
– + + – – – – + – + –
+ – – – – + + – – – +
– + + – – – + – + – –
+ – – – + – + – + – –
– + + + + – – – – – –

15


