

RSM Saves the Circuit Board

Design of Experiments as a Root Cause Analysis Tool

Richard s. Williams

"Quality isn't something that can be argued into an article or promised into it. It must be put there."

- C. G. Campbell

About me

- Chemical Engineer with a Business Degree
- > 38 Years in the chemical industry
 - Most recently as a Six Sigma Master Black Belt
 - ASQ Certified Six Sigma Black Belt
 - Certified Master Black Belt
 - ➤ Specific expertise in SPC and DOE
- > Private consultant since 2016
 - ➤ <u>Teach DOE courses and webinars</u> with Stat-Ease

Richard Scott Williams, LLC

The Situation

- ➤ A computer company experienced a third round of Thermal Management Interface (TMI) bubbles in a 3-year period leading to scrapped chips.
- > Prior root cause efforts failed to resolve this sporadic bubbling issue
- ➤ TMI manufacturer (my client) faced with a need for immediate resolution or lose the business
- A team was assembled and charged with identifying and correcting root cause – quickly
 - > I was brought in to provide leadership and a sense of neutrality and independence
- ➤ The computer company did not want to be heavily burdened with time-consuming participation in correcting the issue.

3

DOE for RCA?

- Problem of consequence + Incomplete Knowledge = Need for new knowledge (aka – experimentation)
 - Data Mining, Fishbone Analysis, SPC, etc. are all helpful. But for these tools to truly build knowledge, validation (trials) are needed
 - RCA relies on establishing causation, not merely correlation
- Need for new knowledge + budget constraints is the domain of DOE.
 - Maximum Benefit, minimal work (cost)
 - Statistically valid conclusions
 - Creation of sustainable solutions

4

2-Factor DOE: Validate Root Cause – LAB Pre-DOE SE.

- ➤ The Lab DOE was a preliminary effort to prove concept did not involve customer time and effort
- ➤ A 2-factor Central Composite Design was selected and executed, inputting the actual "imperfect" factor values
- Design contained 4 factorial points, 4 axial points, and 5 center points, for a total of 13 runs.
- > The customer's process factor was excluded from this pre-
- > Lab blends of the 4 fillers were made to create the axial and center point fillers
- Note: an optimal design would have been a better choice, taking into consideration the skewed design space required (the subsequent DOE made this adjustment)

Full-Scale RSM with Customer Participation

- Armed with a validated RCA theory, the customer was invited to participate in a second RSM DOE
- ➤ This 2nd DOE would be a full-scale replicate of the Lab DOE
- ➤ The customer would add their Process Factor to the study, performed on their shop floor
- Actual customer voids (bubble) data would be collected
- ➤ The goal of the DOE would be to gather sufficient information to validate filler specifications that would give acceptable TMI performance directly at the customer's production process.
- With a validated root cause in hand, and substantial benefits within reach, the customer was eager to participate.

Full-Scale RSM: Design Approach

- ➤ An Optimal RSM design was selected, allowing for the constraint tool to crop the design space to where data cold be collected (no extrapolation)
- ➤ While the DOE was essentially a 3-factor study, in actuality it was a 2-factor study, with each resulting run evaluated under 3 "process factor" settings at the customer
- ➤ 6 center points were run
- ➤ The actual runs conducted in the 2-factor design were limited by the available filler properties. So a manual layout was created on a spreadsheet rather than allowing the optimal design to dictate the runs
- ➤ The resulting design had 42 runs: 4 factorial points, 4 axial points, and 6 center points, each evaluated at 3 process factor settings
- ➤ The samples were not identified at the customer; i.e., it was a blind study

Creating the design template Optimal (Custom) Design Search: Both Exchanges Optimality: I Additional model points: 10 Customistic Blocks: 1 (1 to 1000) The 42 points will be replaced by the manual template But the optimal design approach allowed the design space to be cropped as intended

Key Takeaway Message

- > Quality is what the customer says it is
 - > We either build quality into the product, or we don't
- > Incomplete specifications at product inception can lead to significant problems down the road
- > DOE's are fantastic tools to
 - > Understand factors (or mixture components) of importance
 - ➤ Efficiently gather sufficient information to establish meaningful specifications (Tolerance Intervals)
 - ➤ Aid Root Cause Analyses when it appears our product understanding at inception was lacking and new learnings are needed
- StatEase Design Expert has the tools needed to handle get the job done – with confidence!